UA-46087233-1
Ihre Browserversion ist veraltet. Wir empfehlen, Ihren Browser auf die neueste Version zu aktualisieren.

Wie wird eigentlich Strahlung gemessen?

Gray, Sievert und was sonst noch?

Das nationale Begleitgremium stellt sich vor

H. R. 590 der Startschuss?

Mediziner gegen LNT

Nukleare Drohnen - ein neuer Albtraum?

Könnte Deutschland die große Schweiz werde

Was ist eigentlich Atommüll?
Endlager auf französisch

Transatomic - schon wieder ein neuer Reaktortyp?

Brexit und der atomare Schirm
Jetzt Braunkohle

Atomkonzerne wollen Ausstiegskosten drücken

Tschernobyl – 30 Jahre danach

Müssen alle KKW sofort abgeschaltete werden?

Kernenergie und Erdgas

PLX-R18 - ein Wundermittel gegen die Strahlenkrankheit?
Der LFTR - ein Reaktor mit Salzbad

Kernenergie als Heizung?

3-D-Drucker und die Bombe

Braucht das Leben Strahlung?

Was haben Diesel und Atomkraftwerke gemeinsam?

E3/EU+3 = 10 Punkte für Iran

PRISM das moderne Entsorgungszentrum? Teil 2

PRISM das moderne Entsorgungszentrum? Teil1

Der Wahnsinn geht weiter

P5+1 und die Bombe

Reaktortypen in Europa -- Teil6, CANDU

Reaktortypen in Europa – Teil5, ESBWR

Reaktortypen in Europa -- Teil4,ABWR

Reaktortypen in Europa -- Teil3, AP1000

Reaktortypen in Europa -- Teil2, EPR ReakReaktortypen in Europa -- Teil1, Einleitungtortypen in Europa -- Teil1, Einleitung

Ein Strommarkt für die Energiewende

Hinkley Point C

Kohle,Gas,Öl,Kernenergie? -- Teil 1

Kohle,Gas,Öl,Kernenergie? -- Teil 2
Fukushima -- ein Zwischenbericht

Kapazitätsmärkte - Markt oder Planwirtschaft?

Netzentwicklungsplan 2015 - die Vollendung der Planwirtschaft?entwicklungsplan

Halbzeit bei Gen IV

Energie als Druckmitteler

Fukushima - Zweite Begutachtung durch IAEA-

Wende der Energiewende?? er

Stromautobahn oder Schmalspurbahn?

SMR Teil 1 - nur eine neue Mode?

SMR Teil 2 - Leichtwasserreaktoren

SMR Teil 3 - Innovative Reaktoren

Stasi 2.0 - Zähler

Fukushima Block IV, Entladung der Brennelemen

Medikamente gegen Strahlenschäden

Erdgas oder Kernenergie

Neuer Temperaturrekord für Brennstoffe gemeldet

Chinas erster richtiger Export

Und ewig grüßt das Tanklager

Indien, das schwarze Loch der Energie?

Das ewige Wasserproblem in Fukushima

Die Versicherung von Kernkraftwerken

Galen Winsor, ein Zeitzeuge erzählt

Die Krebsgeschwulst der Energiewirtschaft

Ein möglicher Einstieg in die Fusionstechnologie

Obamas (vermeintlicher) Krieg gegen Kohle

Reaktortypen heute und in naher Zukunft

Die "Dual-Fluid" Erfindung

LEU-Bank der IAEA in Kasachstan

Das SONGS Dilemma

Kernkraft in den Vereinigten Emiraten

Dampferzeuger aus China

Fukushima, zwei Jahre danach.

Druckwasserreaktoren (PWR) der dritten Generation

Auftrag für weiteres KKW aus der Türkei

Lineare Dosis-Wirkungsbeziehung

Schon fast die Geschichte der Proliferation

Abgebrannte Brennelemente für die Sterilisation

Risiko und Nutzen der Energieerzeugung

Fusionsreaktor auf dem LKW?

"Kohleexperten" schlagen zu

Uran-Fracking, neues Unwort zum Quadrat?

Simulator für Reaktor mit Flüssig-Metall-Kühlung

Über die Gestaltung einer Stromversorgung

Kleine Reaktoren die

TRISO

Veröffentlicht am 21.05.2017

Tri-Isotropic (TRISO) Brennstoff wird immer im Zusammenhang mit Hochtemperaturreaktoren (HTR) erwähnt. Oft mit schönen Bildern. Es lohnt sich, sich etwas näher damit zu beschäftigen.

Geschichte

Seit etwa 1957 wurde der Gedanke propagiert, sehr kleine Brennstoffpartikel mit geeigneten Mitteln zu ummanteln und als “Mini-Brennelemente” einzusetzen. Im Vordergrund stand dabei der Gedanke, unterschiedlichste Brennstoffkombinationen zu verwenden: Hoch angereichertes Uran (HEU), schwach angereichertes Uran (LEU), Uran mit Thorium (U,Th), Uran mit Plutonium (U, Pu) und Plutonium (Pu). Es wurden umfangreiche Testreihen in aller Welt durchgeführt. Im Prinzip geht tatsächlich alles. Es gibt aber unterschiedlich Vor- und Nachteile.

 

So hat man z. B. in Deutschland auf Thorium als Brennstoff gesetzt. Man wollte damit eine zweite Schiene von Brutreaktoren schaffen, die die – wie man damals glaubte – geringen Uranvorräte strecken sollte. Diese Entwicklungsrichtung mündete in den Thorium-Hochtemperaturreaktor (THTR) in Hamm-Uentrop als Demonstrationskraftwerk. Diese Schiene kann man heute nur als Sackgasse bezeichnen. Jedenfalls so lange, wie die heutigen Regeln zur Nichtverbreitung von Kernwaffen bestehen bleiben. Man benötigte dafür nämlich auf 93% hoch angereichertes Uran. Heute lagern aus dieser Demonstration noch etwa 900 kg dieses Materials in der Form von schwach abgebrannten Brennelementen in Deutschland. Ein Thema, über das nicht gern öffentlich geredet wird: Die Grünen klammern sich an jedes Gramm, um ihren Gründungsmythos von der ungeklärten Entsorgungsfrage aufrecht erhalten zu können. Eigentlich müßte das Zeug längst in die USA verbracht sein. Es ist geradezu peinlich, wenn man vergleicht, welchen Aufwand die USA und sogar Rußland betreiben, um wenige Kilogramm aus Forschungsreaktoren weltweit wieder einzusammeln und zurück zu führen. In Deutschland steht das Zeug in mäßig bewachten Zwischenlagern rum. Eine tolle Ausgangsposition für Verhandlungen mit Iran, Nord Korea etc. Manchmal stellt man sich schon die Frage, ob das alles nur mit der Bildungsresistenz deutscher Politiker und ihrer ausgesuchten “Atomexperten” erklärbar ist.

 

Aus diesen kleinsten Mini-Brennelementen kann man anschließend technische Brennelemente formen. Dafür haben sich zwei Wege heraus kristallisiert: Etwa tennisballgroße Kugeln oder sechseckige “Bausteine” aus denen man einen Kern aufbauen kann. Die erste Variante ist besonders einfach zu produzieren und ermöglicht einen Reaktor, den man kontinuierlich beladen kann. Frische Kugeln werden oben eingebracht und gleichzeitig unten gebrauchte Kugeln ausgeschleust. Der eher konventionelle Aufbau aus Brennelementen ist dafür flexibler und auch für große Reaktoren geeignet. Letztendlich beruhen aber beide Prinzipien auf den sandartigen Mini-Brennelementen.

 

In Deutschland wurde zur Herstellung dieser Mini-Brennelemente das sogenannte Sol-Gel-Verfahren entwickelt. Später entwickelte die deutsche Firma NUKEM ein Verfahren für die freie Erstarrung solcher Kügelchen. Dieses Verfahren wurde von den Chinesen übernommen. Wiederum ein krasses Beispiel für den Ausverkauf deutscher Hochtechnologie. Einzig allein aus ideologischer Verblendung.

 

Herstellung der Kerne

Uranpulver (U3 O8) wird in Salpetersäure (HNO3) aufgelöst. Es bildet sich eine Uranylnitrat Lösung die noch mit Salmiak neutralisiert werden muß. Ihr werden diverse Alkohole zugesetzt um die Zähigkeit und Oberflächenspannung optimal einzustellen.

 

Diese eingestellte Lösung wird nun aus Glasröhren vertropft. Um die Tröpfchenbildung zu unterstützen, werden diese Röhrchen in Schwingungen versetzt. Aus jedem Röhrchen tropfen etwa 100 Tröpfchen pro Sekunde. Im freien Fall bilden sich daraus kreisrunde Kügelchen von definiertem Durchmesser. Noch sind es unbeständige Flüssigkeitstropfen. Diese fallen deshalb anschließend durch eine Ammoniak Atmosphäre (NH3), welche mit dem Uranylnitrat chemisch reagiert. Es bildet sich um die Kügelchen eine stabile Haut, die ausreicht, damit sie in dem anschließenden Bad ihre kreisrunde Form behalten. Es haben sich – noch weiche und empfindliche – Kugeln von knapp zwei Millimetern Durchmesser gebildet.

 

Diese Kugeln werden mit Dampf in rotierenden Trommeln behandelt. Dadurch wachsen in dem Gel Kristalle und sie werden fest. Anschließend werden diese Kugeln in mehreren Schritten mit Wasser und verschiedenen Chemikalien gründlich gewaschen. Dies ist wichtig, damit in den weiteren Verfahrensschritten kein Uran in die Kohlenstoffschichten verschleppt wird. Unter ständiger Rotation werden die Urankügelchen im Vakuum getrocknet. Die Kugeln schrumpfen dadurch auf etwa einen Millimeter Durchmesser. Im nächsten Schritt werden die Kügelchen bei 430 °C kalziniert. Durch diese hohe Temperatur zerlegen sich die organischen Bestandteile und werden ausgetrieben. Es bleiben Kügelchen aus UO3 mit einem Durchmesser von nur noch einem Dreiviertel-Millimeter zurück. Damit sich das UO3 zu UO2 reduziert, werden sie in einem weiteren Schritt in einer Wasserstoff-Atmosphäre bei rund 600 °C geröstet. Im letzten Verfahrensschritt werden diese Kügelchen bei 1600 °C gebacken, um eine optimale Dichte und Festigkeit zu erlangen. Das Endprodukt sind Kügelchen mit knapp einem Halben-Millimeter Durchmesser. Sie werden noch fein gesiebt (zu klein = zu wenig Brennstoff und zu groß = zu viel Brennstoff) und die unrunden Partikel aussortiert.

 

Die Ummantelung

Ganz entscheidend beim TRISO-Konzept ist die Ummantelung der Brennstoffkerne. Sie muß gleichermaßen mehrere Funktionen erfüllen:

  • Mechanischer und chemischer Schutz der Brennstoffkerne vor Einwirkungen von außen. Die Ummantelung ist so stabil, daß sie einerseits für die direkte Endlagerung geeignet ist, andererseits aber eine Wiederaufbereitung erschwert.
  • Zurückhaltung von Spaltprodukten und Brennstoff, damit das Kühlmittel Helium möglichst sauber bleibt.
  • Volumenausgleich. Bei der Kernspaltung entsteht praktisch das gesamte Periodensystem – diese Stoffe können untereinander und mit dem freigewordenen überschüssigen Sauerstoff reagieren. Es ergeben sich auf jeden Fall neue chemische Verbindungen mit unterschiedlichen Dichten. Etwaige Ausdehnungen müssen durch die Ummantelung abgepuffert werden, um ein Aufsprengen der Brennelementen zu vermeiden.

Es werden insgesamt vier Schichten aufgetragen:

  1. Als innerste Schicht (≈ 95 µm), eine Schicht aus porösem Kohlenstoff. Sie soll wie ein Schwamm aus dem Kern austretende Spaltprodukte (z.B. die Edelgase) aufnehmen und auf Volumenänderungen ausgleichend wirken.
  2. Als zweite Schicht (≈ 40 µm), ebenfalls eine Kohlenstoffschicht, aber diesmal von hoher Dichte.
  3. Als dritte Schicht (≈ 35 µm), eine Schicht aus chemisch sehr widerstandsfähigem Siliciumcarbid. Sie hält fast alle Spaltprodukte auch unter extremen Bedingungen (Störfall) nahezu vollständig zurück.
  4. Als äußere Schicht (≈ 40 µm), wird noch eine weitere Schicht aus besonders dichtem Kohlenstoff aufgebracht.

Die Schichten werden aus der Gasphase abgeschieden. Für die porösen Schichten wird Azetylen (C2 H2) und für die dichten Schichten zusätzlich Propylen (C3 H6) verwendet. Zur Erzeugung der Schicht aus Siliciumcarbid wird Methylchlorsilane (CH3 SiCl5) verwendet.

 

Die Bildung der Schichten erfolgt in einem zylindrischen Reaktor, in dem die Brennstoffkügelchen geschüttet werden und anschließend von unten die Reaktionsgase eingeblasen werden. Dabei werden die Gase in eine so hohe Strömungsgeschwindigkeit versetzt, daß die Kügelchen gerade schweben (Wirbelschicht). Über die Steuerung der Temperatur (1200 bis 1500 °C) wird die Zersetzung der Gase und die Abscheidung auf den Kügelchen gesteuert.

 

Die Brennelemente

Es wird ein Pulver aus 64% Naturgraphit, 16% Elektrographit und 20% Phenolharz hergestellt. Mit diesem Pulver werden die ummantelten Kerne in einer rotierenden Trommel etwa 200 µm überzogen und bei 80 °C getrocknet. Diese Grünlinge dürfen einen Durchmesser von 1,1 bis 1,5 mm haben. Sie werden bei Raumtemperatur mit einem Druck von 50 bar in Silikonformen zu den brennstoffhaltigen Kernen der Brennelemente gepreßt. Eine zweite Form wird mit Reaktorgraphit ausgekleidet, die grünen Kerne eingelegt und mit einem Druck von 3000 bar zusammengepreßt. Dies ergibt die charakteristischen Kugeln für einen Kugelhaufenreaktor.

 

Damit sich das Phenolharz in Graphit zersetzt, werden die Kugeln in einer Argonatmosphäre auf 800 °C erhitzt. Zur Härtung werden sie anschließend noch in einem Vakuum bei fast 2000 °C geglüht. Wenn sie alle Qualitätstest bestanden haben, sind sie nun für den Einsatz im Reaktor fertig.

 

Qualitätskontrolle

Die Verfahrensschritte sind nicht geheimnisvoll. Das eigentliche Wissen liegt in der erforderlichen Qualitätskontrolle. Alle Verfahren müssen bei jedem Zwischenschritt zerstörungsfrei erfolgen. Wird bei einem Fertigungsschritt ein Fehler gemacht, ist das gesamte Fertigprodukt Ausschuss. Es muß also sehr sorgfältig geprüft werden. Hinzu kommt die astronomische Anzahl von Brennstoffkernchen. Es mußten deshalb ganz neue statistische Verfahren entwickelt werden.

 

Mögliche Fehler im Betrieb

Die Brennelemente sollen im Idealfall alle Spaltprodukte vollständig zurückhalten. Gelangt keine Radioaktivität in das Kühlmittel Helium, kann auch keine Radioaktivität aus dem Kraftwerk austreten. Es lohnt sich also, mögliche Schäden etwas näher zu betrachten. Ganz, lassen sich Schäden in der Technik nie verhindern. Es ist vielmehr entscheidend, wieviel Radioaktivität – auch bei einem schwersten Störfall – das Kraftwerksgelände verlassen kann.

  • Überdruck in den Kernen. Es entstehen gasförmige Spaltprodukte, insbesondere Edelgase. Hinzu kommt ein Sauerstoffüberschuss durch die Kernspaltung, da nicht jedes Sauerstoffatom der chemischen Verbindung UO2 einen neuen Partner findet. Es bildet sich Kohlenmonoxid aus der Ummantelung. Diese Gase sollen in der ersten, porösen Schicht zurückgehalten werden. Werden die Qualitätsrichtlinien eingehalten, ergibt sich daraus kein ernsthaftes Problem.
  • Durch die Neutronenstrahlung schrumpft und dehnt sich der Kohlenstoff der Ummantelungen aus. Durch diese Spannungen können Risse auftreten. In Deutschland konnte diese Fehlerquelle fast vollständig ausgeschaltet werden.
  • Durch die Temperaturunterschiede zwischen dem Kern und der Oberfläche können Teile des Kerns in die Umhüllung wandern. Auch dieses Problem kann durch eine konsequente Qualitätskontrolle klein gehalten werden.
  • Edelmetalle greifen die Siliciumcarbid-Schicht chemisch an. Insbesondere Silber kann diese Schichten passieren und bildet unerwünschte Ablagerungen im Reaktor. Generell gilt, daß in die Ummantelung gewanderte Spaltprodukte bei der erhöhten Temperatur eines Störfalls zu unerwarteten Freisetzungen führen können.

Zusammenfasend kann man feststellen, daß hochwertig produzierte Brennelemente, der beste Schutz gegen Freisetzungen bei einem Störfall sind. Hinzu kommt eine (aufwendige) Überprüfung jeder ausgeschleusten Kugel auf Schäden und den erfolgten Abbrand. Je weniger Kugeln “am Limit” sich im Reaktor befinden, je größer sind die Sicherheitsreserven für einen Störfall. Dies war eine Erkenntnis des Versuchsreaktors AVR in Jülich, der als Forschungsreaktor natürlich seine Grenzen erkunden mußte.

 

Brennstoffkreisläufe

Durch die sehr guten neutronenphysikalischen Eigenschaften und die extreme Temperaturbeständigkeit von Kohlenstoff ist das TRISO-Konzept sehr flexibel. Es ist gering angereichertes Uran verwendbar, aber auch Mischoxide oder sogar reines Plutonium, sowie Kreisläufe auf der Basis von Thorium.

 

Favorit ist derzeit die Verwendung von leicht angereichertem Uran. Allerdings muß die Anreicherung deutlich höher als bei Leichtwasserreaktoren sein. Ursache ist beim TRISO-Brennstoff die räumliche Verteilung, durch die eine Selbstabschirmung eintritt.

 

Gemische aus Plutonium und Uran können auch verwendet werden. Diese können als Karbide oder Nitrite eingesetzt werden. Favorit dürfte wegen der Erfahrungen in Leichtwasserreaktoren Mischoxide (MOX) sein.

 

Es wurden sogar reine Plutonium-Brennstoffe untersucht. Dies geschah aus dem Gedanken, insbesondere Plutonium aus einer Abrüstung zu verbrennen. Vielen Kritikern machen die weltweit ständig steigenden Plutoniumvorräte sorgen. Allerdings ist bis zu einem Prototyp noch sehr viel Forschung und Entwicklung nötig.

 

Das aus Thorium gebildete U–233 ist mit Abstand das beste Spaltmaterial für thermische Reaktoren. Aus diesem Grunde wurde in USA und Deutschland schon sehr früh das Thorium-Brutreaktor-Konzept favorisiert. Allerdings dürfte die Verwendung von hoch angereichertem Uran heute nicht mehr praktikabel sein. Für eine mittlere Anreicherung bzw. Verwendung von Plutonium als Ersatz, ist noch sehr viel Forschung nötig.

 

Entsorgung

Ein TRISO-Brennelement besteht aus 94% Graphit. Einerseits ist das für eine (auch sehr lange) Zwischenlagerung eine sehr gute Verpackung, andererseits muß man gewaltige Volumen lagern. Es empfiehlt sich daher eine Wiederaufbereitung um das Volumen zur Endlagerung klein zu halten. Leider gilt aber: Je (mechanisch und chemisch) stabiler ein Brennelement ist, je geringer ist (auch) im Störfall die Freisetzung von Spaltprodukten. Allerdings ist es dann auch um so aufwendiger an diese Spaltprodukte und Wertstoffe heranzukommen. Bei noch nicht bestrahlten Brennelementen ist das Stand der Technik. Der Ausschuss jeder Produktionsstufe wird wieder in die Ursprungsprodukte zerlegt und wiederverwendet.

Im Betrieb wird radioaktives C14 gebildet. Dieser Kohlenstoff bleibt in der Matrix gelöst. Insbesondere bei Feuchtigkeit kann dieses C14 in der Form von CO2 Gas austreten. Ähnliches gilt für radioaktives Tritium H3. Die auftretenden Mengen sind so gering, daß sie bei einer Wiederaufbereitung nach entsprechender Verdünnung in die Umwelt abgegeben werden könnten. Beide Stoffe kommen ohnehin in der Natur vor.

Die Mengen sind nicht sonderlich hoch. Bei einem Hochtemperaturreaktor dürften in seinem Leben von 60 Jahren rund 5.000 bis 10.000 to abgebrannter Brennelemente anfallen. Diese entwickeln nach etwa drei Jahren etwa 100 W Wärme pro Lagerkanne. Dieser Wert halbiert sich noch einmal nach 50 Jahren. Eine Lagerung ist also kein Problem.

Hat man erstmal die Kerne “zerstört” – gemeint ist damit, die Kohlenstoffschichten mechanisch und/oder chemisch entfernt – ist die Wiederaufbereitung in leicht modifizierten PUREX-Anlagen möglich.